Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles |
| |
Authors: | M. IINO |
| |
Affiliation: | Department of Biology, Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya-ku, Tokyo 158, Japan |
| |
Abstract: | Abstract. The hypothesis that tropic responses result from lateral auxin gradients was examined in coleoptiles of red-light-grown maize ( Zea mays L.) by measuring endogenous IAA (indole-3-acetic acid) using a physicochemical method. Phototropic stimulation (unilateral blue light; 8s at 0.33 μmol m−2s−1) was found to induce a lateral gradient of solvent-extractable IAA in a subapical zone (2-7mm from the tip). The gradient occurred in advance of the bending response, with a decrease of IAA in the irradiated half and a compensatory increase in the shaded half. The maximal gradient measured was about 1:2 (irradiated: shaded). Diffusible IAA, obtained from the cut end of an excised coleoptile tip (3mm long, with its base split by 1mm), was similarly redistributed between the two sides, indicating that IAA is laterally translocated in the tip and that the resulting IAA gradient migrates to the subapical zone. A smaller gradient was induced in a basal zone (12-17mm from the tip). This gradient was initiated about 20 min later than that at the subapical zone, in agreement with a similar delay of bending observed in this zone. Gravitropic stimulation (60° from the vertical) also resulted in a lateral gradient of extractable IAA in the subapical zone, the gradient preceding the bending response. It is concluded that the tropisms of maize coleoptiles are mediated by IAA gradients, which are most likely caused by lateral IAA transport as the Cholodny-Went theory of tropisms describes. From IAA measurement data, the mean velocity of basipetally-polar transport of endogenous IAA was estimated to be 12 mm h−1. |
| |
Keywords: | phototropism gravilropism auxin indole-3-acetic acid Cholodny-Went theory of tropisms coleoptile Zea mays. |
|
|