首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of perfusate buffer capacity on capillary CO2-HCO3(-)-H+ reactions: theory.
Authors:A Bidani  T A Heming
Institution:Department of Internal Medicine, University of Texas Medical Branch, Galveston 77550.
Abstract:The importance of perfusate nonbicarbonate buffer capacity (beta nonHCO3) to intracapillary CO2-HCO3(-)-H+ reactions was assessed by theoretical analysis of CO2 exchange in saline-perfused pulmonary capillaries. Time courses for perfusate PCO2, HCO3-], and H+] were computed for capillaries containing different activities of luminal vascular carbonic anhydrase and different amounts of perfusate nonbicarbonate buffers. Mobilization of perfusate HCO3- toward CO2 during capillary transit is determined by the availability of HCO3- and H+. A supply of protons from the nonbicarbonate buffer pool is necessary to maintain a high rate of HCO3- dehydration. The analyses indicate that beta nonHCO3 has marked nonlinear effects on transcapillary CO2 exchange and intravascular pH equilibration. These nonlinear effects differ from those previously computed for CO2 reactions in an open system because the present model system consists of a sequential combination of open (within capillary proper) and closed (within postcapillary vasculature) systems. The role of luminal vascular carbonic anhydrase in capillary CO2 reactions is strongly dependent on beta nonHCO3. Perfusate nonbicarbonate buffer capacity must be considered when the results of experimental studies of transcapillary CO2 exchange and/or intravascular pH equilibration are interpreted.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号