首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Insulin receptor substrate-1, p70S6K, and cell size in transformation and differentiation of hemopoietic cells
Authors:Valentinis B  Navarro M  Zanocco-Marani T  Edmonds P  McCormick J  Morrione A  Sacchi A  Romano G  Reiss K  Baserga R
Institution:Kimmel Cancer Center and the Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
Abstract:After an initial burst of cell proliferation, the type 1 insulin-like growth factor receptor (IGF-IR) induces granulocytic differentiation of 32D IGF-IR cells, an interleukin-3-dependent murine hemopoietic cell line devoid of insulin receptor substrate-1 (IRS-1). The combined expression of the IGF-IR and IRS-1 (32D IGF-IR/IRS-1 cells) inhibits IGF-I-mediated differentiation, and causes malignant transformation of 32D cells. Because of the role of IRS-1 in changing the fate of 32D IGF-IR cells from differentiation (and subsequent cell death) to malignant transformation, we have looked for differences in IGF-IR signaling between 32D IGF-IR and 32D IGF-IR/IRS-1 cells. In this report, we have focused on p70(S6K), which is activated by the IRS-1 pathway. We find that the ectopic expression of IRS-1 and the inhibition of differentiation correlated with a sustained activation of p70(S6K) and an increase in cell size. Phosphorylation in vivo of threonine 389 and, to a lesser extent, of threonine 421/serine 424 of p70(S6K) seemed to be a requirement for inhibition of differentiation. A role of IRS-1 and p70(S6K) in the alternative between transformation or differentiation of 32D IGF-IR cells was confirmed by findings that inhibition of p70(S6K) activation or IRS-1 signaling, by rapamycin or okadaic acid, induced differentiation of 32D IGF-IR/IRS-1 cells. We have also found that the expression of myeloperoxidase mRNA (a marker of differentiation, which sharply increases in 32D IGF-IR cells), does not increase in 32D IGF-IR/IRS-1 cells, suggesting that the expression of IRS-1 in 32D IGF-IR cells causes the extinction of the differentiation program initiated by the IGF-IR, while leaving intact its proliferation program.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号