首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphorus nutrition and mycorrhiza effects on grass leaf growth. P status- and size-mediated effects on growth zone kinematics
Authors:Kavanová Monika  Grimoldi Agustín A  Lattanzi Fernando A  Schnyder Hans
Affiliation:Lehrstuhl für Grünlandlehre, Technische Universität München, Am Hochanger 1, D-85350 Freising-Weihenstephan, Germany
Abstract:This study tested whether leaf elongation rate (LER, mm h(-1)) and its components--average relative elemental growth rate (REGRavg, mm mm(-1) h(-1)) and leaf growth zone length (L(LGZ), mm)--are related to phosphorus (P) concentration in the growth zone (P(LGZ) mg P g(-1) tissue water) of Lolium perenne L. cv. Condesa and whether such relationships are modified by the arbuscular mycorrhizal fungus (AMF) Glomus hoi. Mycorrhizal and non-mycorrhizal plants were grown at a range of P supply rates and analysed at either the same plant age or the same tiller size (defined by the length of the sheath of the youngest fully expanded leaf). Both improved P supply (up to 95%) and AMF (up to 21%) strongly increased LER. In tillers of even-aged plants, this was due to increased REGRavg and L(LGZ). In even-sized tillers, it was exclusively due to increased REGRavg. REGRavg was strictly related to P(LGZ) (r2 = 0.95) and independent of tiller size. Conversely, L(LGZ) strictly depended on tiller size (r2 = 0.88) and not on P(LGZ). Hence, P status affected leaf growth directly only through effects on relative tissue expansion rates. Symbiosis with AMF did not modify these relationships. Thus, no evidence for P status-independent effects of AMF on LER was found.
Keywords:arbuscular mycorrhizal fungi    Glomus hoi    leaf elongation rate    leaf growth zone    Lolium perenne L.    relative elemental growth rate
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号