首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo Tracking of Dendritic Cell using MRI Reporter Gene,Ferritin
Authors:Hoe Suk Kim  Jisu Woo  Jae Hoon Lee  Hyun Jung Joo  YoonSeok Choi  Hyeonjin Kim  Woo Kyung Moon  Seung Ja Kim
Affiliation:1Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea;2Department of Biomedical Science, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Korea;3Department of Radiology, Seoul Metropolitan Government Seoul National University, Boramae Medical Center, 20 Boramae-ro, Dongjag-gu, Seoul, Korea;Istituto Superiore di Sanità, ITALY
Abstract:
The noninvasive imaging of dendritic cells (DCs) migrated into lymph nodes (LNs) can provide helpful information on designing DCs-based immunotherapeutic strategies. This study is to investigate the influence of transduction of human ferritin heavy chain (FTH) and green fluorescence protein (GFP) genes on inherent properties of DCs, and the feasibility of FTH as a magnetic resonance imaging (MRI) reporter gene to track DCs migration into LNs. FTH-DCs were established by the introduction of FTH and GFP genes into the DC cell line (DC2.4) using lentivirus. The changes in the rate of MRI signal decay (R2*) resulting from FTH transduction were analyzed in cell phantoms as well as popliteal LN of mice after subcutaneous injection of those cells into hind limb foot pad by using a multiple gradient echo sequence on a 9.4 T MR scanner. The transduction of FTH and GFP did not influence the proliferation and migration abilities of DCs. The expression of co-stimulatory molecules (CD40, CD80 and CD86) in FTH-DCs was similar to that of DCs. FTH-DCs exhibited increased iron storage capacity, and displayed a significantly higher transverse relaxation rate (R2*) as compared to DCs in phantom. LNs with FTH-DCs exhibited negative contrast, leading to a high R2* in both in vivo and ex vivo T2*-weighted images compared to DCs. On histological analysis FTH-DCs migrated to the subcapsular sinus and the T cell zone of LN, where they highly expressed CD25 to bind and stimulate T cells. Our study addresses the feasibility of FTH as an MRI reporter gene to track DCs migration into LNs without alteration of their inherent properties. This study suggests that FTH-based MRI could be a useful technique to longitudinally monitor DCs and evaluate the therapeutic efficacy of DC-based vaccines.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号