首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional analysis of an interspecies chimera of acyl carrier proteins indicates a specialized domain for protein recognition
Authors:T Ritsema  A M Gehring  A R Stuitje  K M G M van der Drift  I Dandal  R H Lambalot  C T Walsh  J E Thomas-Oates  B J J Lugtenberg  H P Spaink
Institution:Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands. Fax: +31–71–5275088; e-mail spaink@rulbim.leidenuniv.nl, NL
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA, US
Department of Genetics, Institute for Molecular Biological Sciences, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands, NL
Bijvoet Center for Biomolecular Research, Department of Mass Spectrometry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands, NL
Abstract:The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4′-phosphopantetheine prosthetic group by holo-ACP synthase. The Km value for NodF is 61?μM, as compared to 2?μM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for β-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric gene was constructed comprising part of the E.coliacpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1–33 of AcpP fused to amino acids 43–93 of NodF) protein encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition sites for many enzymes).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号