首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alpine vascular plant species richness: the importance of daily maximum temperature and pH
Authors:CM Vonlanthen  PM Kammer  W Eugster  A Bühler  H Veit
Institution:(1) Institute of Geography, University of Berne, Hallerstrasse 12, 3012 Berne, Switzerland;(2) LLB S1 Biology, Canton and University of Berne, Gertrud-Wokerstrasse 5, 3012 Berne, Switzerland;(3) Institute of Plant Sciences, ETH Zentrum LFW C55.2, 8092 Zürich, Switzerland
Abstract:Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone. Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.
Keywords:Alpine vegetation  Intermediate disturbance hypothesis  Intermediate stress hypothesis  Microclimate  Soil nutrients  Standing crop
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号