首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tropic failure of Phyllactinia corylea contributes to the mildew resistance of mulberry genotypes
Authors:Babu A M  Kumar Jalaja S  Kumar Vineet  Sarkar A  Datta R K
Institution:Electron Microscopy Unit, Central Sericultural Research and Training Institute, Mysore 570 008, India. babuam@rediffmail.com
Abstract:Different mulberry genotypes show great variation in their resistance to the powdery mildew Phyllactinia corylea. Conidial germination and hyphal growth of P. corylea on the leaf surface of two susceptible mulberry genotypes, viz., Kanva 2 (K2) and Victory 1 (V1) varieties of Morus indica, and on two resistant species, viz,, M. laevigata and M. serrata were studied by scanning electron microscopy. Conidial germination and growth of germ tubes were normal on all the leaves. The hyphae of P. corylea identify stomata on host leaves by their topographical features to produce the stomatopodia precisely over them. The holes and/or the grooves of stomata appear to provide the signals for the initiation of stomatopodia and similar structures are erratically developed over many local depressions or grooves on leaf surface. The abaxial surface of K2 leaf is smooth without prominent undulations of epidermal cell surface, and the stomata are flush with the leaf surface. Although successful penetration is also achieved on V1 leaf, its slightly undulated surface occasionally provides inaccurate tropic signals to the hyphae, inducing the development of stomatopodia away from the stomata. The leaf surfaces of M. laevigata and M. serrata are very rough with highly sculptured cuticle and abundant epidermal outgrowths. Stomata mostly remain sunken or hidden amidst the cuticular ornamentations and the hyphae fail to recognise the precise signals from them. As the surface architecture of the leaves provides many immense sources of tropic signals, stomatopodia are often produced over local depressions or grooves. In these cases the fungus fails to penetrate the leaf, does not develop beyond 24 h and penetration is rarely achieved on the leaves of the resistant plants. The study indicates that the stimulatory effect of the leaf surface topography of resistant varieties misleads the pathogen from successful penetration, thus contributing to the plant's resistance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号