首页 | 本学科首页   官方微博 | 高级检索  
     


Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin
Authors:Günter Neumann  Agnès Massonneau  Enrico Martinoia  Volker Römheld
Affiliation:Institut für Planzenern?hrung (330), Universit?t Hohenheim, D-70593 Stuttgart, Germany, DE
Institut de Botanique, Laboratoire de Physiologie Végétale, Université de Neuchatel, CH-2007 Neuchatel, Suisse,
Abstract:
Release of large amounts of citric acid from specialized root clusters (proteoid roots) of phosphorus (P)-deficient white lupin (Lupinus albus L.) is an efficient strategy for chemical mobilization of sparingly available P sources in the rhizosphere. The present study demonstrates that increased accumulation and exudation of citric acid and a concomitant release of protons were predominantly restricted to mature root clusters in the later stages of P deficiency. Inhibition of citrate exudation by exogenous application of anion-channel blockers such as ethacrynic- and anthracene-9-carboxylic acids may indicate involvement of an anion channel. Phosphorus-deficiency-induced accumulation and subsequent exudation of citric acid seem to be a consequence of both increased biosynthesis and reduced metabolization of citric acid in the proteoid root tissue, indicated by increased in-vitro activity and enzyme protein levels of phosphoenolpyruvate carboxylase (EC 4.1.1.31), and reduced activity of aconitase (EC 4.2.1.3) and root respiration. Similar to citric acid, acid phosphatase, which is secreted by roots and involved in the mobilization of the organic soil P fraction, was released predominantly from proteoid roots of P-deficient plants. Also 33Pi uptake per unit root fresh-weight was increased by approximately 50% in juvenile and mature proteoid root clusters compared to apical segments of non-proteoid roots. Kinetic studies revealed a K m of 30.7 μM for Pi uptake of non-proteoid root apices in P-sufficient plants, versus K m values of 8.5–8.6 μM for non-proteoid and juvenile proteoid roots under P-deficient conditions, suggesting the induction of a high-affinity Pi-uptake system. Obviously, P-deficiency-induced adaptations of white lupin, involved in P acquisition and mobilization of sparingly available P sources, are predominantly confined to proteoid roots, and moreover to distinct stages during proteoid root development. Received: 10 September 1998 / Accepted: 22 December 1998
Keywords:: Acid phosphatase  Lupinus  Organic acids  Phosphorus (deficiency  uptake)  Root exudates
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号