首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Binding of adenosine diphosphoribosyltransferase to the termini and internal regions of linear DNAs
Authors:S S Sastry  K G Buki  E Kun
Institution:Department of Pharmacology, University of California, San Francisco 94143.
Abstract:Binding mechanisms of ADPR-transferase to restricted double-stranded DNA fragments of SV40 and pBR322 DNA were determined by nuclease protection techniques. Top and bottom strands of double-stranded DNA were identified by specific labeling with 32P. Protection against specific exonucleases identified binding of ADPR-transferase to DNA termini, whereas binding to internal regions of linear DNAs was probed by protection against endonucleases. ADPR-transferase protein protected against exonucleolytic attack from lambda exo and exoIII in all DNA fragments tested, demonstrating that the enzyme protein binds indiscriminately to all DNA termini. Extending earlier results Sastry, S.S., & Kun, E. (1988) J. Biol. Chem. 263, 1505-1512], the modifying effect of the binding of ADPR-transferase to DNA induced changes in DNA conformation, as evident from altered pause sites that appeared following digestion of DNA fragments by lambda exonuclease in the presence of ADPR-transferase. In contrast to the nonselective binding of ADPR-transferase to DNA termini, ADPR-transferase conferred protection endonuclease attack (DNase I and micrococcal nuclease) only to the 209-bp EcoRI-PstI SV40 DNA fragment. These results indicate that binding of ADPR-transferase to relatively rare internal regions of restricted DNA fragments exhibits some degree of specificity. Specificity of binding appears to be related to the coincidental relative A+T-rich regions in DNA, and to DNA bending, both identified in the 209-bp SV40 DNA fragment. Synthetic polydeoxyribonucleotides containing dA-dT bind ADPR-transferase stronger than polydeoxyribonucleotides containing dG-dC. It was deduced from endonuclease protection patterns that binding of the enzyme protein leaves no defined footprints on the 209-bp SV40 DNA fragment, but there is significant modification of DNA structure following binding of the enzyme protein. Methylation protection assays and the prevention of the binding of ADPR-transferase to T4 DNA by its glucosylation indicate that the enzyme binds in the major groove of DNA. The 36-kDa A peptide fragment of ADPR-transferase Buki, K. G., & Kun, E. (1988) Biochemistry 27, 5990-5995] exhibits the same protection against endonucleolytic enzymes as the intact ADPR-transferase molecule.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号