Evidence for an essential role for arginyl residues for yeast phosphoglycerate kinase. |
| |
Authors: | K Rogers B H Weber |
| |
Affiliation: | Department of Chemistry and Institute for Molecular Biology, California State University, Fullerton, California 92634 USA |
| |
Abstract: | Reaction of yeast phosphoglycerate kinase with either butanedione or cyclohexanedione can result in modification of up to all 13 arginyl residues with total loss of activity; however, extrapolation to zero activity for partially modified preparations indicates that up to 7 arginyls are essential. Whereas 20 mm 3-phosphoglycerate affords partial protection of activity toward both reagents, 20 mm MgATP affords complete protection of activity and protects 2 arginyls against modification by butanedione and 1 arginyl against modification by cyclohexanedione. With butanedione the modification could be reversed with total recovery of activity, suggesting that only arginyl groups were modified, which is consistent with the amino acid analysis of the modified protein. Only at high cyclohexanedione concentrations or long reaction times was a yellow product obtained that showed loss of lysyl residues. Circular dichroism spectra show that even when all the arginyls are modified by butanedione or up to 10 modified by cyclohexanedione there is no change observed in the far or near ultraviolet, indicating that there is no detectable conformational change concomitant with modification, which is confirmed by hydrodynamic studies. It is concluded that at least one, possibly two, arginyls of yeast phosphoglycerate kinase are essential for its action on ATP. |
| |
Keywords: | To whom inquiries and reprint requests should be addressed. |
本文献已被 ScienceDirect 等数据库收录! |
|