首页 | 本学科首页   官方微博 | 高级检索  
     


Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping
Authors:Jean E Abraham  Mel J Maranian  Inmaculada Spiteri  Roslin Russell  Susan Ingle  Craig Luccarini  Helena M Earl  Paul PD Pharoah  Alison M Dunning  Carlos Caldas
Affiliation:1. Department of Oncology and Strangeway’s Research Laboratory, University of Cambridge, Cambridge, UK
2. Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, University of Cambridge NHS Foundation Hospitals, Hills Road, Cambridge, UK
3. Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
4. Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
Abstract:
ABSTRACT: BACKGROUND: The increasing trend for incorporation of biological sample collection within clinical trials requires sample collection procedures which are convenient and acceptable for both patients and clinicians. This study investigated the feasibility of using saliva-extracted DNA in comparison to blood-derived DNA, across two genotyping platforms: Applied Biosystems Taqman TM and Illumina Beadchip TM genome-wide arrays. METHOD: Patients were recruited from the Pharmacogenetics of Breast Cancer Chemotherapy (PGSNPS) study. Paired blood and saliva samples were collected from 79 study participants. The Oragene DNA Self-Collection kit (DNAgenotek(R)) was used to collect and extract DNA from saliva. DNA from EDTA blood samples (median volume 8 ml) was extracted by GenProbe, Livingstone, UK. DNA yields, standard measures of DNA quality, genotype call rates and genotype concordance between paired, duplicated samples were assessed. RESULTS: Total DNA yields were lower from saliva (mean 24 ug, range 0.2-52 ug) than from blood (mean 210 ug, range 58-577 ug) and a 2-fold difference remained after adjusting for the volume of biological material collected. Protein contamination and DNA fragmentation measures were greater in saliva DNA. 78/79 saliva samples yielded sufficient DNA for use on Illumina Beadchip arrays and using Taqman assays. Four samples were randomly selected for genotyping in duplicate on the Illumina Beadchip arrays. All samples were genotyped using Taqman assays. DNA quality, as assessed by genotype call rates and genotype concordance between matched pairs of DNA was high (>97%) for each measure in both blood and saliva-derived DNA. CONCLUSION: We conclude that DNA from saliva and blood samples is comparable when genotyping using either Taqman assays or genome-wide chip arrays. Saliva sampling has the potential to increase participant recruitment within clinical trials, as well as reducing the resources and organisation required for multicentre sample collection.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号