首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Leptin regulates energy metabolism in MCF-7 breast cancer cells
Institution:1. Department of Biotechnological and Applied Clinical Sciences, University of L''Aquila, 67100 L''Aquila, Italy;2. Department of Life, Health and Environmental Sciences, University of L''Aquila, 67100 L''Aquila, Italy
Abstract:Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phoshate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.
Keywords:Breast cancer  Leptin  Warburg effect  Metabolism  Lipid oxidation  Glycolysis  2-DG"}  {"#name":"keyword"  "$":{"id":"kw0040"}  "$$":[{"#name":"text"  "_":"2-deoxyglucose  AMPK"}  {"#name":"keyword"  "$":{"id":"kw0050"}  "$$":[{"#name":"text"  "_":"5′ AMP-activated protein kinase  FAT/CD36"}  {"#name":"keyword"  "$":{"id":"kw0060"}  "$$":[{"#name":"text"  "_":"fatty acid translocase or cluster of differentiation 36  CPT1"}  {"#name":"keyword"  "$":{"id":"kw0070"}  "$$":[{"#name":"text"  "_":"carnitine palmitoyltransferase I  CS"}  {"#name":"keyword"  "$":{"id":"kw0080"}  "$$":[{"#name":"text"  "_":"citrate synthase  G6PDH"}  {"#name":"keyword"  "$":{"id":"kw0090"}  "$$":[{"#name":"text"  "_":"glucose-6-phosphate dehydrogenase  GAPDH"}  {"#name":"keyword"  "$":{"id":"kw0100"}  "$$":[{"#name":"text"  "_":"glyceraldehyde 3-phosphate dehydrogenase  GLUT2"}  {"#name":"keyword"  "$":{"id":"kw0110"}  "$$":[{"#name":"text"  "_":"glucose transporter 2  LDH"}  {"#name":"keyword"  "$":{"id":"kw0120"}  "$$":[{"#name":"text"  "_":"lactate dehydrogenase  PDH"}  {"#name":"keyword"  "$":{"id":"kw0130"}  "$$":[{"#name":"text"  "_":"pyruvate dehydrogenase  pAMPK"}  {"#name":"keyword"  "$":{"id":"kw0140"}  "$$":[{"#name":"text"  "_":"phosphorylated 5′ AMP-activated protein kinase  OCR"}  {"#name":"keyword"  "$":{"id":"kw0150"}  "$$":[{"#name":"text"  "_":"oxygen consumption rate  OXPHOS"}  {"#name":"keyword"  "$":{"id":"kw0160"}  "$$":[{"#name":"text"  "_":"oxidative phosphorylation  PC"}  {"#name":"keyword"  "$":{"id":"kw0170"}  "$$":[{"#name":"text"  "_":"pyruvate carboxylase  PDH"}  {"#name":"keyword"  "$":{"id":"kw0180"}  "$$":[{"#name":"text"  "_":"pyruvate dehydrogenase  PPARα"}  {"#name":"keyword"  "$":{"id":"kw0190"}  "$$":[{"#name":"text"  "_":"peroxisome proliferator-activated receptor alpha
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号