首页 | 本学科首页   官方微博 | 高级检索  
     


Plasmin-sensitive dibasic sequences in the third fibronectin-like domain of L1-cell adhesion molecule (CAM) facilitate homomultimerization and concomitant integrin recruitment
Authors:Silletti S  Mei F  Sheppard D  Montgomery A M
Affiliation:Department of Pediatrics, University of California at San Diego, La Jolla, California 92037, USA.
Abstract:L1 is a multidomain transmembrane neural recognition molecule essential for neurohistogenesis. While moieties in the immunoglobulin-like domains of L1 have been implicated in both heterophilic and homophilic binding, the function of the fibronectin (FN)-like repeats remains largely unresolved. Here, we demonstrate that the third FN-like repeat of L1 (FN3) spontaneously homomultimerizes to form trimeric and higher order complexes. Remarkably, these complexes support direct RGD-independent interactions with several integrins, including alpha(v)beta(3) and alpha(5)beta(1). A pep- tide derived from the putative C-C' loop of FN3 (GSQRKHSKRHIHKDHV(852)) also forms trimeric complexes and supports alpha(v)beta(3) and alpha(5)beta(1) binding. Substitution of the dibasic RK(841) and KR(845) sequences within this peptide or the FN3 domain limited multimerization and abrogated integrin binding. Evidence is presented that the multimerization of, and integrin binding to, the FN3 domain is regulated both by conformational constraints imposed by other domains and by plasmin- mediated cleavage within the sequence RK( downward arrow)HSK( downward arrow)RH(846). The integrin alpha(9)beta(1), which also recognizes the FN3 domain, colocalizes with L1 in a manner restricted to sites of cell-cell contact. We propose that distal receptor ligation events at the cell-cell interface may induce a conformational change within the L1 ectodomain that culminates in receptor multimerization and integrin recruitment via interaction with the FN3 domain.
Keywords:neural CAM   heterophilic ligation   melanoma   αvβ3   α5β1   α9β1
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号