首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Environmental and hormonal regulation of seed dormancy and germination in Cape fynbos Leucospermum R.Br. (Proteaceae) species
Authors:G J Brits  J G M Cutting  N A C Brown  J van Staden
Institution:(1) Fynbos Research Unit, Private Bag X1, 7607 Elsenburg, South Africa;(2) Department of Horticultural Science, University of Natal, Box 375, 3200 Pietermaritzburg, South Africa;(3) Conservation Biology Research Unit, National Botanical Institute, Kirstenbosch, Private Bag X7, 7735 Claremont, South Africa;(4) Department of Botany, University of Natal, 3200 Pietermartizburg, South Africa;(5) Present address: Department of Plant Science, Massey University, Palmerston North, New Zealand
Abstract:The endogenous levels of abscisic acid (ABA), cytokinins (CKs) and gibberellins (GA1/GA3 combined) in Leucospermum glabrum embryos were monitored in axes and cotyledons separately during normal germination. Plant growth substance changes were correlated with known morphological, structural and ultrastructural events in the embryo of Proteaceae. The effect of exogenous application of 6-benzyladenine (BA) and GA4+7 under three known dormancy-enforcing environmental conditions were studied in L. glabrum and L. cordifolium. The endogenous levels of the hormone classes GAs and CKs changed phasically during normal germination under a single alternating temperature regime. GA1/GA3 levels increased in cotyledons within 3 d of hydration while at the same time initial CK levels decreased. Following this transient peak GAs fell to a low level throughout the germinative period. Subsequently the CKs, Z and ZR, and to a lesser extent their dihydro-derivatives, appeared in both the axes and the cotyledons as fluctuating, transient peaks. Early increases in GAs are thought to control the induction of the germination process. The CK pattern suggests that CKs control at least three major processes of germination sensu stricto following induction: 1) early mobilization of protein and lipid reserves in the axis and later in cotyledons, 2) cotyledon expansion which causes the endotesta to split permitting radicle protrusion and 3) later, radicle growth.Our results indicate that dormancy in intact Leucospermum seeds is enforced by embryo anoxia, regulated by the impermeable exotesta. In addition synthesis of or tissue sensitizing to both hormone classes GAs and CKs depends on moderately low temperature as the primary environmental requirement. For GA synthesis a secondary, daily pulse of high temperature is required. Inhibitory hormones, specifically ABA, appear not to play a role.Abbreviations ABA Abscisic acid - BA 6-benzyladenine - CK Cytokinin - DHZ Dihydrozeatin - DHZR Dihydrozeatin riboside - GA Gibberellin - HPLC High performance liquid chromatography - iP Isopentenyladenine - IPA Isopentenyladenosine - PGS Plant growth substance - RIA Radioimmunoassay - Z Zeatin - ZR Zeatin riboside
Keywords:alternating temperature  cytokinin  eco-physiology  gibberellin  Leucospermum  plant growth substances  seed dormancy
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号