首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity
Authors:I-Jung Tsai  Zhen-Wei Liu  John Rayment  Christel Norman  Allan McKinley  Boris Martinac
Institution:(1) School of Medicine and Pharmacology, University of Western Australia, QE II Medical Center, Nedlands, WA, 6009, Australia;(2) School of Biomedical and Chemical Sciences, University of Western Australian, 35 Stirling Highway, Crawley, WA, 6009, Australia;(3) Present address: School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
Abstract:The periplasmic loop of MscL, the mechanosensitive channel of large conductance, acts as a spring resisting the opening of the channel. Recently, a high-throughput functional screening of a range of MscL structural mutants indicated that the substitution of residue glutamine (Q) 65 with arginine (R) or leucine (L) leads to a wild-type (WT)-like and a loss-of-function (LOF) phenotype, respectively (Maurer and Dougherty J. Biol. Chem. 278(23):21076–21082, 2003). We used electron paramagnetic resonance (EPR) spectroscopy, single-channel recording and in vivo experiments to investigate further the effect of R and L mutation of Q65 on the gating mechanism of MscL. Structural analysis of Q65R and Q65L was carried out by coupling the site-directed spin labeling (SDSL) with EPR spectroscopy. A SDSL cysteine mutant of the isoleucine 24 residue (I24C-SL) in the first transmembrane domain, TM1, of MscL served as a reporter residue in EPR experiments. This was due to its strong spin–spin interaction with the neighboring I24C-SL residues in the MscL channel pentamer (Perozo et al.Nature 418:942–948, 2002). The effects of bilayer incorporation of lysophosphatidylcholine on the MscL mutants were also investigated. Functional analysis was carried out using patch-clamp recordings from these mutants and WT MscL reconstituted into artificial liposomes. Although our data are largely in agreement with the high-throughput mutational analysis of Maurer and Dougherty, this study shows that Q65R and Q65L form functional channels and that these mutations lead to partial gain-of-function (GOF) and LOF mutation, respectively. Overall, our study confirms and advances the notion that the periplasmic loop plays a role in setting the channel mechanosensitivity.A Proceeding of the 28th Annual Meeting of the Australian Society for Biophysics
Keywords:Mechanosensitive channel  Electron paramagnetic resonance  Lysophosphatidylcholine  Patch-clamp  Osmoregulation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号