摘 要: | 准确高效获取土壤水盐信息是盐碱地改良和可持续利用的前提。本研究以地面野外高光谱反射率和实测土壤水盐含量为数据源,利用分数阶微分(FOD)技术对原始光谱反射率进行步长为0.25的处理,从光谱数据与土壤水盐信息相关性层面筛选FOD阶数,构建二维光谱指数,采用支持向量机回归(SVR)和地理加权回归(GWR)建立土壤水盐含量反演模型并进行验证。结果表明:FOD技术可以在一定程度上减弱高光谱噪声并挖掘潜在光谱信息,提高高光谱反射率与土壤含水量(SMC)、pH值和含盐量的相关性,相关系数最高分别提升0.98、1.35和0.33。与一维光谱相比,FOD结合二维光谱指数筛选的特征波段组合对SMC、pH值和含盐量的响应更敏感,分别以1.5、1.0和0.75阶为最优,其中,SMC最大相关系数绝对值的最佳组合波段为570、1000、1010、1020、1330和2140 nm; pH值为550、1000、1380和2180 nm;含盐量为600、990、1600和1710 nm。相较于原始光谱反射率,SMC、pH值和含盐量最优阶次估算模型验证决定系数(Rp2)最高...
|