首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide donors regulate nitric oxide synthase in bovine pulmonary artery endothelium
Authors:Chen J X  Berry L C  Tanner M  Chang M  Myers R P  Meyrick B
Institution:Center for Lung Research, Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2650, USA.
Abstract:This study examined the notion that exogenous generation of nitric oxide (NO) modulates NOS gene expression and activity. Bovine pulmonary artery endothelial cells (BPAEC) were treated with the NO donors, 1 mM SNAP (S-nitroso-N-acetylpenicillamine), 0.5 mM SNP (sodium nitroprusside) or 0.2 microM NONOate (spermine NONOate) in medium 199 containing 2% FBS. Controls included untreated cells and cells exposed to 1 mM NAP (N-acetyl-D-penicillamine). NOS activity was assessed using a fibroblast-reporter cell assay; intracellular Ca2+ concentrations were assessed by Fura-2 microfluorometry; and NO release was measured by chemiluminescence. Constitutive endothelial (e) and inducible (i) NOS gene and protein expression were examined by northern and western blot analysis, respectively. Two hours exposure to either SNAP or NONOate caused a significant elevation in NO release from the endothelial cells (SNAP = 51.4 +/- 5.9; NONOate = 23.8 +/- 4.2; control = 14.5 +/- 2.8 microM); but A23187 (3 microM)-stimulated NO release was attenuated when compared to controls. Treatment with either SNAP or NONOate for 2 h also resulted in a significant increase in NOS activity in endothelial homogenates (SNAP = 23.6 +/- 2.5; NONOate= 29.8 +/- 7.7; control = 14.5 +/- 2.5fmol cGMP/microg per 10(6) cells). Exposure to SNAP and SNP, but not NONOate, for 1 h caused an increase in intracellular calcium. Between 4 and 8 h, SNAP and NONOate caused a 2- to 3-fold increase in eNOS, but not iNOS, gene (P < 0.05) and protein expression. NAP had little effect on either eNOS gene expression, activity or NO production. Our data indicate that exogenous generation of NO leads to a biphasic response in BPAEC, an early increase in intracellular Ca2+, and increases in NOS activity and NO release followed by increased expression of the eNOS gene, but not the iNOS gene. We conclude that eNOS gene expression and activity are regulated by a positive-feedback regulatory action of exogenous NO.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号