首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methacarn (methanol-Carnoy) fixation
Authors:Holde Puchtler  Faye Sweat Waldrop  Susan N Meloan  Mary S Terry  H M Conner
Institution:(1) Department of Pathology, Medical College of Georgia/Eugene Talmadge Memorial Hospital, 30902 Augusta, Georgia, USA
Abstract:Summary According to chemical data, methanol raises the shrinkage temperature of collagen significantly more than ethanol (86° C versus 70° C). Since increase of shrinkage temperature appears desirable in tissues to be embedded in paraffin, methanol was substituted for ethanol in Carnoy's fluid. This methanol-Carnoy mixture is referred to as methacarn solution. The fixation-embedding procedure was similar to that described in the study of Carnoy fixation. Methacarn-fixed sections showed little or no shrinkage and compared well with material fixed in Carnoy's or Zenker's fluid. Myofibrils, especially in endothelial and epithelial cells, were more prominent in methacarn- than in Carnoy-fixed tissues.A review of the chemical literature showed that methanol, ethanol and chloroform stabilize or even enhance helical conformations of proteins, presumably by strengthening of hydrogen bonds. Interference with hydrophobic bonds causes unfolding and/or structural rearrangements in globular proteins. The twin-helical structure of DNA collapses in alcoholic solutions. Hence, methacarn fixation can be expected to preserve the helical proteins in myofibrils and collagen, but the conformations of globular proteins and DNA will be significantly altered. Literature on conformational effects produced by fixatives used in electron microscopy was also reviewed. Glutaraldehyde and OsO4 cause considerable loss of helix (22–29% and 39–66% respectively). KMnO4 and glutaraldehyde followed by OsO4 produce extensive transitions from helical to random-coil conformations similar to those seen in powerful denaturants such as 8 M urea. Evidently these fixatives are unsuitable for studies of helical proteins. In contrast ethylene glycol preserves helical conformations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号