首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Topochemical investigation of early stages of lignin modification within individual cell wall layers of Scots pine (Pinus sylvestris L.) sapwood infected by the brown-rot fungus Antrodia vaillantii (DC.: Fr.) Ryv.
Authors:Mathias Rehbein  Gerald Koch
Institution:Institute for Wood Technology and Wood Biology, Federal Research Institute of Rural Areas, Forestry and Fisheries (vTI), Leuschnerstr. 91d, 21031 Hamburg, Germany
Abstract:The initiation and progress of wood degradation of Pinus sylvestris sapwood exposed to the brown-rot fungus Antrodia vaillantii was studied on a cellular level by scanning UV microspectrophotometry (UMSP 80, Zeiss, MSP 800 Spectralytics). This improved analytical technique enables direct imaging of lignin modification within individual cell wall layers. The topochemical analyses were supplemented by light and transmission electron microscopy (TEM) studies in order to characterize morphological changes during the first days of degradation. Small wood blocks (1.5 × 1.5 × 5 mm) of Scots pine (P. sylvestris) were exposed to fungal decay by A. vaillantii for 3, 7, 11, 16, and 22 days. No significant weight loss was determined in the initial decay periods within three up to 7 days. After three days of decay the topochemical investigation revealed that the lignin modification starts at the outermost part of the secondary wall layer, especially in the region of the latewood tracheids. During advanced degradation after exposure of 22 days, lignin modification occurs non-homogeneously throughout the tissue. Even among the significantly damaged cells, some apparently unmodified cells still exist. Knowledge about lignin modification at initial stages of wood degradation is of fundamental importance to provide more information on the progress of brown-rot decay.
Keywords:Antrodia vaillantii  Pinus sylvestris  Wood degradation  Lignin modification  Topochemistry  Universal microspectrophotometry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号