首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recovery and Detection of Escherichia coli O157:H7 in Surface Water,Using Ultrafiltration and Real-Time PCR
Authors:Bonnie Mull  Vincent R Hill
Institution:Centers for Disease Control and Prevention, Atlanta, Georgia,1. Association of Public Health Laboratories/Centers for Disease Control and Prevention, Emerging Infectious Diseases Laboratory Fellowship Program, Atlanta, Georgia2.
Abstract:Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) outbreaks have revealed the need for improved analytical techniques for environmental samples. Ultrafiltration (UF) is increasingly recognized as an effective procedure for concentrating and recovering microbes from large volumes of water and treated wastewater. This study describes the application of hollow-fiber UF as the primary step for concentrating EHEC O157:H7 seeded into 40-liter samples of surface water, followed by an established culture/immunomagnetic-separation (IMS) method and a suite of real-time PCR assays. Three TaqMan assays were used to detect the stx1, stx2, and rfbE gene targets. The results from this study indicate that approximately 50 EHEC O157:H7 cells can be consistently recovered from a 40-liter surface water sample and detected by culture and real-time PCR. Centrifugation was investigated and shown to be a viable alternative to membrane filtration in the secondary culture/IMS step when water quality limits the volume of water that can be processed by a filter. Using multiple PCR assay sets to detect rfbE, stx1, and stx2 genes allowed for specific detection of EHEC O157:H7 from strains that do not possess all three genes. The reported sample collection and analysis procedure should be a sensitive and effective tool for detecting EHEC O157:H7 in response to outbreaks of disease associated with contaminated water.Several highly publicized outbreaks of gastrointestinal diseases caused by enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) have highlighted the threat this pathogen poses to public health (1, 2, 3, 14). Although the predominant mode of transmission to humans appears to be contaminated meat or meat products, there have been a number of outbreaks associated with contaminated water (18). Microbiological, epidemiological, and environmental studies have found an association between EHEC O157:H7 outbreaks and recreational water, drinking water, crop irrigation, and wastewater (1, 2, 14). These investigations have also revealed that enhanced rapid analytical techniques are needed to improve the speed and effectiveness of these types of investigations.Hollow-fiber ultrafiltration (UF) is a sampling technique that is emerging as an option for recovering diverse microbes from large-volume water samples (8, 9, 12, 13, 15). There have been reports of the successful application of UF for surface water as well as for other E. coli strains (8, 13), but additional data are needed to evaluate the robustness of UF for surface water and its ability to effectively concentrate EHEC O157:H7 in the presence of background microbes. The presence of competitive microbes has been shown to significantly alter the growth rate and maximal density of EHEC O157:H7 in broth culture (5).EHEC O157:H7 is generally detected in water samples by using membrane filtration, selective broth enrichment, immunomagnetic-separation (IMS), and isolation on selective agar culture plates, followed by confirmatory tests such as PCR or serological tests (6, 7). However, sensitive detection of EHEC O157:H7 in surface waters can be difficult due to high levels of competing background microorganisms (7). Membrane filtration can also limit the volume processed for turbid surface waters due to filter clogging. Centrifugation is an alternative to membrane filtration and has an advantage of not being subject to potential sample volume processing constraints for turbid water samples, so the technique could potentially increase the sensitivity of detection. A number of PCR assays have been developed for detection of EHEC O157:H7 that target a variety of virulence genes (17). Testing multiple gene targets is necessary for accurate detection because certain non-EHEC O157:H7 serotypes and other bacterial species are known to possess the target genes; therefore, the isolate cannot be determined to be EHEC O157:H7 unless multiple assays show a positive signal (19).The goals of this study were to evaluate (i) the effectiveness of a previously reported UF method (8) for application to recovering EHEC O157:H7, (ii) the effectiveness of the culture/IMS technique performed in conjunction with primary UF concentration, (iii) the effectiveness of centrifugation as an alternative for membrane filtration in the culture/IMS method, and (iv) the ability of three previously reported real-time PCR assays to accurately detect EHEC O157:H7 in surface waters (16, 17).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号