首页 | 本学科首页   官方微博 | 高级检索  
     


Ca2+ transfer via the ER-mitochondria tethering complex in neuronal cells contribute to cadmium-induced autophagy
Authors:Wang  Tao  Zhu  Qiaoping  Cao  Binbin  Cai  Yao  Wen  Shuangquan  Bian  Jianchun  Zou  Hui  Song  Ruilong  Gu  Jianhong  Liu  Xuezhong  Liu  Zongping  Yuan  Yan
Affiliation:1.College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People’s Republic of China
;2.Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People’s Republic of China
;3.Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, People’s Republic of China
;
Abstract:

Mitochondrial-associated endoplasmic reticulum (ER) membranes (MAMs) play a key role in several physiological functions, including calcium ion (Ca2+) transfer and autophagy; however, the molecular mechanism controlling this interaction in cadmium (Cd)-induced neurotoxicity is unknown. This study shows that Cd induces alterations in MAMs and mitochondrial Ca2+ levels in PC12 cells and primary neurons. Ablation or silencing of mitofusin 2 (Mfn2) in PC12 cells or primary neurons blocks the colocalization of ER and mitochondria while reducing the efficiency of mitochondrial Ca2+ uptake. Moreover, Mfn2 defects reduce interactions or colocalization between GRP75 and VDAC1. Interestingly, the enhancement of autophagic protein levels, colocalization of LC3 and Lamp2, and GFP-LC3 puncta induced by Cd decreased in Mfn2?/? or Grp75?/? PC12 cells and Mfn2- or Grp75-silenced primary neurons. Notably, the specific Ca2+ uniporter inhibitor RuR blocked both mitochondrial Ca2+ uptake and autophagy induced by Cd. Finally, this study proves that the mechanism by which IP3R-Grp75-VDAC1 tethers in MAMs is associated with the regulation of autophagy by Mfn2 and involves their role in mediating mitochondrial Ca2+ uptake from ER stores. These results give new evidence into the organelle metabolic process by demonstrating that Ca2+ transport between ER-mitochondria is important in autophagosome formation in Cd-induced neurodegeneration.

Graphical abstract
 loading=
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号