首页 | 本学科首页   官方微博 | 高级检索  
     


A Self‐Doping,O2‐Stable,n‐Type Interfacial Layer for Organic Electronics
Authors:Thomas H. Reilly III  Alexander W. Hains  Hsiang‐Yu Chen  Brian A. Gregg
Affiliation:National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden CO 80401, USA
Abstract:Solid films of a water‐soluble dicationic perylene diimide salt, perylene bis(2‐ethyltrimethylammonium hydroxide imide), Petma+OH?, are strongly doped n‐type by dehydration and reversibly de‐doped by hydration. The hydrated films consist almost entirely of the neutral perylene diimide, PDI, while the dehydrated films contain ~50% PDI anions. The conductivity increases by five orders of magnitude upon dehydration, probably limited by film roughness, while the work function decreases by 0.74 V, consistent with an n‐type doping density increase of ~12 orders of magnitude. Remarkably, the PDI anions are stable in dry air up to 120 °C. The work function of the doped film, ? (3.96 V vs. vacuum), is unusually negative for an O2‐stable contact. Petma+OH? is also characterized as an interfacial layer, IFL, in two different types of organic photovoltaic cells. Results are comparable to state of the art cesium carbonate IFLs, but may improve if film morphology can be better controlled. The films are stable and reversible over many months in air and light. The mechanism of this unusual self‐doping process may involve the change in relative potentials of the ions in the film caused by their deshielding and compaction as water is removed, leading to charge transfer when dry.
Keywords:doping  organic electronics  photovoltaic devices  solar cells  thin films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号