首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selenium Promotes the Growth and Photosynthesis of Tomato Seedlings Under Salt Stress by Enhancing Chloroplast Antioxidant Defense System
Authors:Ming Diao  Long Ma  Jianwei Wang  Jinxia Cui  Aifei Fu  Hui-ying Liu
Institution:2. Department of Agronomy, Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, People’s Republic of China
1. Department of Horticulture, Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, People’s Republic of China
Abstract:Tomato (Lycopersicon esculentum Miller) cv. Jiahe No. 9 (a salinity-resistant cultivar) and cv. Shuangfeng 87-5 (a salinity-sensitive cultivar) were used as experimental materials to investigate the effects of exogenous selenium (Na2SeO3 0.05 mM) on plant growth, chlorophyll fluorescence, photosynthetic rate, and antioxidative metabolism of chloroplasts in tomato seedlings under NaCl (100 mM) stress. Salt stress significantly inhibited plant growth, net photosynthetic rate (P n), maximum quantum yield of PSII (F v/F m), actual photochemical efficiency of PSII (Φ PSII), photochemical quenching coefficient (q P), and non-photochemical quenching coefficient (q N) of both cultivars, whereas application of Se reversed the negative effects of salt stress. Furthermore, application of Se significantly decreased the levels of hydrogen peroxide (H2O2) and malondialdehyde. Application of Se increased the activities of superoxidase dismutase, glutathione reductase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione peroxidase, and thioredoxin reductase, and the contents of ascorbate, glutathione (GSH) and NADPH, and the ratios of GSH/GSSH, AsA/DHA, and NADPH/ NADP+ in the salt-stressed chloroplasts of both cultivars. These results suggest that Se alleviates salt-induced oxidative stress through regulating the antioxidant defense systems in the chloroplasts of tomato seedlings, which is associated with the improvement of the photochemical efficiency of PSII, thereby maintaining higher photosynthetic rates. In addition, the salt tolerance of Jiahe No. 9 is closely related with high reactive oxygen species scavenging activity and reducing power levels in the chloroplasts.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号