Selective induction of c-jun and jun-B but not c-fos or c-myc during mitogenesis in SV40-transformed cells at the predifferentiation growth arrest state. |
| |
Authors: | H Wang J Y Wang L R Johnson R E Scott |
| |
Affiliation: | Department of Pathology, University of Tennessee Medical Center, Memphis. |
| |
Abstract: | Insulin has recently been reported to function as a complete mitogen for SV40 large T antigen-transformed 3T3 T-cells, designated CSV3-1, but not for nontransformed 3T3 T-cells (H. Wang and R. E. Scott, J. Cell. Physiol., 147: 102-110, 1991). It is now reported that sodium orthovanadate mimics this effect of insulin. For example, when exposed to 1-5 microM vanadate, most predifferentiation growth-arrested CSV3-1 cells undergo DNA synthesis within 24 h, but neither vanadate nor insulin induces mitogenesis in nontransformed 3T3 T-cells. To investigate the possible mechanisms by which mitogenesis is induced in CSV3-1 cells, the effects of insulin and vanadate on the expression of growth-related genes were examined. Whereas insulin and vanadate had no effect on the expression of c-fos, c-myc, c-jun, jun-B, or ornithine decarboxylase activity in nontransformed 3T3 T-cells, insulin and vanadate showed different effects on the expression of these genes in CSV3-1 cells. Insulin induced a rapid and transient accumulation of c-fos mRNA followed by induction of c-myc, c-jun, jun-B, and ornithine decarboxylase. In contrast, vanadate induced the expression of c-jun, jun-B, and ornithine decarboxylase without inducing c-fos and c-myc. These observations suggest that SV40 large T antigen may play an important role in insulin- and vanadate-induced mitogenesis and that insulin and vanadate may mediate their mitogenic effects by different signal transduction pathways. |
| |
Keywords: | |
|
|