Liver Nonprotein Sulfhydryl and Taurine Concentrations,and Fat Content of Rats Fed a Low Protein Diet Supplemented with Sulfur-containing Amino Acids |
| |
Authors: | Toshizo Kimura Tadashi Suzuki Masatoshi Ishikawa Akira Yoshida |
| |
Affiliation: | Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Chikusa, Nagoya, Japan |
| |
Abstract: | The relative excess of some catabolites of sulfur-containing amino acids in the liver of rats fed a low protein diet might be one of the factors which cause the liver fat accumulation. To investigate the possibility were studied relationships between changes in concentrations of some metabolites of sulfur-containing amino acids and those in fat contents of rats fed a low protein diet consisting of heated soybean flour, casein or wheat flour with or without added methionine, threonine or lysine. The addition of 0.6% methionine to the 25% heated soybean flour diet increased the nonprotein-sulfhydryl (NP–SH) concentration and fat content in the liver. These changes were prevented by the further addition of 0.5% threonine to the diet, although the NP–SH concentration was remarkably higher than that of rats fed the unsupplemented diet. The addition of 0.6% cystine HC1 to the 25% heated soybean flour diet containing sufficient choline elevated the NP–SH concentration and fat content in the liver, which were not affected by the further addition of 0.5% threonine. The addition of 0.6% cystine HC1 to the 10% casein diet significantly increased the fat content, and NP–SH and taurine concentrations in the liver. The further addition of 0.5 % threonine completely decreased the fat content, and partially reduced the NP–SH and taurine concentrations. Effects of supplementation of 0.4% lysine HC1 to the 70% wheat flour diet on the fat content and NP–SH concentration in the liver demonstrated the trends similar to those of supplementation of cystine to the 10% casein diet. The further addition of threonine remarkably decreased the fat content, NP–SH and taurine concentrations in the liver. |
| |
Keywords: | triiodothyronine urea synthesis N-acetylglutamate synthesis N-acetylglutamate degradation |
|
|