Growth stimulation and inhibition by salt in relation to Na+ manipulating genes in xero-halophyte Atriplex halimus L. |
| |
Authors: | Abdel Hamid A. Khedr Mamdouh S. Serag Mamdouh M. Nemat-Alla Amina Z. Abo El-Naga Reham M. Nada W. Paul Quick Gaber M. Abogadallah |
| |
Affiliation: | (1) Department of Botany, Faculty of Science, New Damietta, Damietta, 3417, Egypt;(2) Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK; |
| |
Abstract: | In the present study, Na+ manipulating genes could contribute not only to ion homeostasis but also to growth stimulation with exposing the halophyte Atriplex halimus L. to moderate NaCl concentration. The stimulation of growth was attributed to Na+ accumulation inside the vacuole leading to increase leaf cell size as well as accelerate leaf cell division. Increasing the assimilatory surface could result in enhancing the photosynthetic rate. The reduction of A. halimus growth compared to optimum growth at 50 and 200 mM NaCl could be attributed to osmotic effect rather than the ionic one of salt stress. The inhibition of photosynthesis seemed to be resulted from limitation of CO2 due to the osmotic effect on stomatal conductance rather than the activity loss of photosynthetic machinery. The depletion of starch content along with the increase in sucrose content could imply that photosynthesis may be a limiting for A. halimus growth. The fast coordinate induction of Na+ manipulating genes could reveal that the tolerance of A. halimus to high concentrations evolved from its ability to regulate and control Na+ influx and efflux. V-H +-PPase may play a vital role in A. halimus tolerance to osmotic and/or ionic stress due to its kinetics of induction. It seemed that H+-ATPase plays a pivotal role in A. halimus tolerance to stress due to the increase in its protein level was detected with all NaCl concentrations as well as with PEG treatments. Both of these genes might be useful in improving stress tolerance in transgenic crops. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|