首页 | 本学科首页   官方微博 | 高级检索  
     


Role of helix 3 in pore formation by the Bacillus thuringiensis insecticidal toxin Cry1Aa
Authors:Vachon Vincent  Préfontaine Gabrielle  Coux Florence  Rang Cécile  Marceau Lucie  Masson Luke  Brousseau Roland  Frutos Roger  Schwartz Jean-Louis  Laprade Raynald
Affiliation:Groupe de recherche en transport membranaire, Université de Montréal, P.O. Box 6128, Centre Ville Station, Montreal, Quebec, H3C 3J7, Canada.
Abstract:
Helix 3 of the Cry1Aa toxin from Bacillus thuringiensis possesses eight charged amino acids. These residues, with the exception of those involved in intramolecular salt bridges (E90, R93, E112, and R115), were mutated individually either to a neutral or to an oppositely charged amino acid. The mutated genes were expressed, and the resultant, trypsin-activated toxins were assessed for their toxicity to Manduca sexta larvae and their ability to permeabilize M. sexta larval midgut brush border membrane vesicles to KCl, sucrose, raffinose, potassium gluconate, and N-methyl-D-glucamine hydrochloride with a light-scattering assay based on osmotic swelling. Most mutants were considerably less toxic than Cry1Aa. Replacing either E101, E116, E118, or D120 by cysteine, glutamine, or lysine residues had only minor effects on the properties of the pores formed by the modified toxins. However, half of these mutants (E101C, E101Q, E101K, E116K, E118C, and D120K) had a significantly slower rate of pore formation than Cry1Aa. Mutations at R99 (R99C, R99E, and R99Y) resulted in an almost complete loss of pore-forming ability. These results are consistent with a model in which alpha-helix 3 plays an important role in the mechanism of pore formation without being directly involved in determining the properties of the pores.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号