首页 | 本学科首页   官方微博 | 高级检索  
     


A new approach to three-dimensional reconstructed imaging of hormone-secreting cells and their microvessel environments in rat pituitary glands by confocal laser scanning microscopy.
Authors:J Itoh  K Kawai  A Serizawa  K Yasumura  K Ogawa  R Y Osamura
Affiliation:Laboratories for Structure and Function Research, Tokai University School of Medicine, Isehara, Japan.
Abstract:There has been considerable interest in the relationship between hormone- secreting endocrine cells and their microvessels in human pituitary gland. However, microcirculatory networks have rarely been studied in three dimensions (3D). This study was designed to visualize and to reveal the relationship between hormone-secreting endocrine cells and their microvessel environment in 3D, using rat pituitary glands under various (hyper/hypo) experimental conditions by confocal laser scanning microscopy (CLSM). Female adult Wistar rats were used after bilateral adrenalectomy or ACTH administration for 2 weeks. Clear 3D reconstructed images of ACTH cells, the microvessel network and counterstained nuclei were obtained at a maximal focus depth of 1 mm by CLSM without any background noise. In the hyperfunctional state, slender cytoplasmic processes of hypertrophic stellate ACTH cells frequently extended to the microvessels. In the hypofunctional state, ACTH cells appeared atrophic and round with scanty cytoplasm, and cytoplasmic adhesions to microvessel network patterns were inconspicuous. Therefore, 3D reconstructed imaging by CLSM is a useful technique with which to investigate the microvessel environment of hormone-secreting cells and has the potential to reveal dynamic hormone-secreting pathways.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号