首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Epoxyeicosatrienoic acids inhibit Ca2+ entry into platelets stimulated by thapsigargin and thrombin.
Authors:K C Malcolm  F A Fitzpatrick
Institution:Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262.
Abstract:The epoxyeicosatrienoic acids derived from the cytochrome P-450 pathway of arachidonic acid metabolism have a unique platelet antiaggregatory profile. This prompted us to examine their influence on cellular Ca2+ mobilization. 14,15-cis-Epoxyeicosatrienoic acid and related compounds inhibited the rise in cytosolic Ca2+ following agonist stimulation of platelets by thapsigargin, a receptor-independent agonist, and thrombin, a receptor-dependent agonist. The epoxyeicosatrienoic acids selectively inhibited the entry of Ca2+ from the exterior of the platelets but did not alter Ca2+ discharge from intracellular pools. The magnitude of inhibition by 14,15-cis-epoxyeicosatrienoic acid was proportional to the rate of Ca2+ entry. 14,15-cis-Epoxyeicosatrienoic acid also inhibited the rate of influx of Mn2+, a cation which enters platelets via pathways similar to Ca2+. The magnitude of inhibition was proportional to the rate of Mn2+ entry, suggesting that epoxyeicosatrienoic acids act on divalent cation channels in a fashion which depends on the state of opening of the channel. Selective inhibition of Ca2+ entry into platelets may account for the antiaggregatory effects of the epoxyeicosatrienoic acids. We are unaware of other endogenous compounds exhibiting this property, suggesting that epoxyeicosatrienoic acids may be useful to probe agonist-stimulated Ca2+ mobilization in nonexcitable cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号