首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methylation of histone H3 lysine-79 by Dot1p plays multiple roles in the response to UV damage in Saccharomyces cerevisiae
Authors:Bostelman Lindsey J  Keller Andrew M  Albrecht Ashley M  Arat Arzu  Thompson Jeffrey S
Institution:Department of Biology, Denison University, 213 Talbot Hall, Granville, Ohio 43023, USA.
Abstract:Various proteins have been found to play roles in both the repair of UV damaged DNA and heterochromatin-mediated silencing in the yeast Saccharomyces cerevisiae. In particular, factors that are involved in the methylation of lysine-79 of histone H3 by Dot1p have been implicated in both processes, suggesting a bipartite function for this modification. We find that a dot1 null mutation and a histone H3 point mutation at lysine-79 cause increased sensitivity to UV radiation, suggesting that lysine-79 methylation is important for efficient repair of UV damage. Epistasis analysis between dot1 and various UV repair genes indicates that lysine-79 methylation plays overlapping roles within the nucleotide excision, post-replication and recombination repair pathways, as well as RAD9-mediated checkpoint function. In contrast, epistasis analysis with the H3 lysine-79 point mutation indicates that the lysine-to-glutamic acid substitution exerts specific effects within the nucleotide excision repair and post-replication repair pathways, suggesting that this allele only disrupts a subset of the functions of lysine-79 methylation. The overall results indicate the existence of distinct and separable roles of histone H3 lysine-79 methylation in the response to UV damage, potentially serving to coordinate the various repair processes.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号