首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Road effects on vegetation composition in a saline environment
Authors:Sheng-Lan Zeng  Ting-Ting Zhang  Yu Gao  Bo Li  Chang-Ming Fang  S Luke Flory  Bin Zhao
Institution:1. Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, 220 Han Dan Road, Shanghai 200433, P.R. China;2. Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
Abstract:Aims Road effects from maintenance and traffic have the potential to alter plant communities, but the exact relationships between these effects and changes in plant community composition have not often been studied in diverse environments. To determine the direction and level of community composition changes in saline environment due to road effects, we conducted a study along roads of different ages and in nearby non-road (i.e. natural) areas in the Yellow River Delta, China. Additionally, to potentially elucidate the mechanisms underlying the changes in the richness and composition of plant communities along roads, we evaluated physiochemical changes in soil of roadside and non-road areas.Methods Floristic and environmental data were collected along roadside of different ages and nearby non-road areas. To evaluate plant communities at each site, six 2 m × 2 m quadrats were placed at 3-m intervals along roads and six quadrats were arranged randomly in non-road areas. To determine the difference in plant community composition between roadside and non-road areas, we measured species richness and the abundance of each species, examined species turnover and floristic dissimilarity between the two areas and positioned plant species and sites in an abstract multivariate space. Plant community (species richness, percentage of halophytes) and soil physicochemical properties (pH, salinity, moisture content, bulk density, nitrate and ammonium nitrogen concentration) were compared between roadside and non-road areas (young roadside vs. corresponding non-road areas, old roadside vs. corresponding non-road areas) by using t -tests. Classification and ordination techniques were used to examine the relationship between vegetation and related environmental variables in both roadside and non-road areas.Important findings For both the young and old roadside areas, species richness in roadside areas was significantly higher than in non-road areas and high floristic dissimilarity values indicated that roadside and non-road areas differed greatly in community composition. In both the young and old roadside areas, the plant communities in roadside areas had lower percentages of halophytes than non-road communities. Correspondence analysis and two-way indicator species analysis showed that halophytes dominated in the non-road areas, while a number of typical non-salt-tolerant species dominated in the roadside areas. Compared to non-road areas, activities associated with roads significantly decreased soil moisture, bulk density and salinity and increased soil pH and nitrate content. Forward selection for the environmental variables in canonical correspondence analysis showed that soil salinity was the most important factor related to the variation of species composition between roadside and non-road areas. Our study demonstrates that road effects have a significant impact on the associated vegetation and soil, and these changes are consistent across roads of different ages in our system.
Keywords:road effect  salinization  species composition  vegetation-environment relationships  
点击此处可从《Journal of Plant Ecology》浏览原始摘要信息
点击此处可从《Journal of Plant Ecology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号