首页 | 本学科首页   官方微博 | 高级检索  
     


Higher intensity of purifying selection on >90% of the human genes revealed by the intrinsic replacement mutation rates
Authors:Subramanian Sankar  Kumar Sudhir
Affiliation:Center for Evolutionary Functional Genomics, The Biodesign Institute, Arizona State University, AZ, USA.
Abstract:For over 3 decades, the rate of replacement mutations has been assumed to be equal to, and estimated from, the rate of "strictly" neutral sequence divergence in noncoding regions and in silent-codon positions where mutations do not alter the amino acid encoded. This assumption is fundamental to estimating the fraction of harmful protein mutations and to identifying adaptive evolution at individual codons and proteins. We show that the assumption is not justifiable because a much larger fraction of codon positions is involved in hypermutable CpG dinucleotides as compared with the introns, leading to a higher expected replacement mutation rate per site in a vast majority of the genes. Consideration of this difference reveals a higher intensity of purifying natural selection than previously inferred in human genes. We also show that a much smaller number of genes are expected to be evolving with positive selection than that predicted using sequence divergence at intron and silent positions in the human genome. These patterns indicate the need for using new approaches for estimating rates of amino acid-altering mutations in order to find positively selected genes and codons in genomes that contain hypermutable CpG's.
Keywords:adaptive evolution    mutation rate    test of selection    comparative genomics
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号