首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cline coupling and uncoupling in a stickleback hybrid zone
Authors:Timothy H Vines  Anne C Dalziel  Arianne Y K Albert  Thor Veen  Patricia M Schulte  Dolph Schluter
Institution:1. Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada;2. Axios Review Editorial Office, Vancouver, British Columbia, Canada;3. Department of Biology, Saint Mary's University, Nova Scotia, Canada;4. Women's Health Research Institute, Vancouver, British Columbia, Canada;5. Integrative Biology, University of Texas at Austin, Austin, Texas
Abstract:Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibrium, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection on a locus can also pull its cline away from the others, reducing linkage disequilibrium and weakening the barrier to gene flow. We looked for this “cline uncoupling” effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. These clines were all steep and located together at the top of the estuary, such that we found no evidence for cline uncoupling. However, we did not observe the stepped shape normally associated with steep concordant clines. It thus remains possible that these clines cluster together because their individual selection regimes are identical, but this would be very surprising given their diverse roles in osmoregulation, body armor, and swimming performance.
Keywords:Ectodysplasin  Gasterosteus aculeatus  hybridization  linkage disequibrium  reproductive isolation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号