首页 | 本学科首页   官方微博 | 高级检索  
     


High performance computing environment for multidimensional image analysis
Authors:A Ravishankar Rao  Guillermo A Cecchi  Marcelo Magnasco
Affiliation:IBM T,J, Watson Research Center, Yorktown Heights, NY 10598, USA. ravirao@us.ibm.com
Abstract:

Background

The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications.

Results

We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup.

Conclusion

Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号