首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of the higher-order structure of tRNAs on the stability of hybrids with oligodeoxyribonucleotides: separation of tRNA by an efficient solution hybridization.
Authors:Y Kumazawa  T Yokogawa  H Tsurui  K Miura  and K Watanabe
Institution:Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan.
Abstract:In the course of developing a method to purify a single tRNA species efficiently, we have examined hybridization efficiencies between some tRNAs and short oligodeoxyribonucleotide probes both by the filter and solution hybridization methods without denaturants. The hybridization efficiencies varied considerably among probes which are complementary to different regions of the tRNAs, although there was little efficiency variation in the probes toward DNA substrates including the same nucleotide sequence. This efficiency variation was shown to be due to tRNA-specific higher-order structures as well as a hypermodified nucleotide in the anticodon loop. Characterization of the tRNA-probe hybrids by both nondenaturing gel electrophoresis and chemical modification showed the existence of two stable hybridizing states as a function of ionic strength. Our results indicate that RNA molecules with a number of intramolecular base pairings are able to form stable hybrids with complementary sequences under nondenaturing conditions. On the basis of these data, an appropriate probe was designed to successfully purify yeast tRNA(Phe) by making a tRNA(Phe)-probe hybrid, which has a longer retention time in hydroxyapatite high performance liquid chromatography than the tRNA(Phe) itself.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号