Abstract: | ![]() Filaggrin is a component of the cornified cell envelope and the precursor of free amino acids acting as a natural moisturizing factor in the stratum corneum. Deimination is critical for the degradation of filaggrin into free amino acids. In this study, we tried to identify the enzyme(s) responsible for the cleavage of deiminated filaggrin in vitro. First, we investigated citrulline aminopeptidase activity in the extract of newborn rat epidermis by double layer fluorescent zymography and detected strong activity at neutral pH. Monitoring the citrulline-releasing activity, we purified an enzyme of 280 kDa, comprised of six identical subunits of 48 kDa. The NH2 terminus of representative tryptic peptides perfectly matched the sequence of rat bleomycin hydrolase (BH). The enzyme released various amino acids except Pro from β-naphthylamide derivatives and hydrolyzed citrulline-β-naphthylamide most effectively. Thus, to break down deiminated filaggrin, another protease would be required. Among proteases tested, calpain I degraded the deiminated filaggrin effectively into many peptides of different mass on the matrix-assisted laser desorption/ionization-time of flight mass spectrum. We confirmed that various amino acids including citrulline were released by BH from those peptides. On the other hand, caspase 14 degraded deiminated filaggrin into a few peptides of limited mass. Immunohistochemical analysis of normal human skin revealed co-localization of BH and filaggrin in the granular layer. Collectively, our results suggest that BH is essential for the synthesis of natural moisturizing factors and that calpain I would play a role as an upstream protease in the degradation of filaggrin.The mammalian epidermal keratinocytes arise from proliferating basal cells and move outward through a series of distinct differentiation events to form the stratum corneum (1, 2). During this progressive epidermal differentiation, keratinocytes express different proteins such as keratins, profilaggrin/filaggrin, involucrin, small proline-rich proteins, loricrin, cystatin A, and elafin, which form the cornified envelope of mature corneocytes (3–7). Profilaggrin is synthesized as a large, extremely insoluble phosphoprotein that consists of a unique NH2-terminal Ca2+-binding protein of the S-100 family, linked to 10–20 tandem filaggrin monomer repeats (8–10). Each individual filaggrin repeat is completely removed by proteolysis to generate the mature filaggrin monomer (a molecular mass of 37 kDa in human). Then, filaggrin is completely degraded in the uppermost layer of the stratum corneum to produce a mixture of free and modified hygroscopic amino acids that are important for maintaining epidermal hydration (2, 11–13). In addition, a number of proteins are subjected to various post-translational modifications such as disulfide bonding, N-(γ-glutamyl)-lysine isopeptide cross-linking, and deimination during the terminal differentiation of epidermal keratinocytes (4, 6, 14, 15). Deimination is catalyzed by peptidylarginine deiminase (PAD),2 which converts arginine to citrulline in proteins (17–19). The modification seems essential for the processing into free amino acids including citrulline.Several proteases reportedly participate in the processing of profilaggrin. Furin, a member of the proprotein convertase family, has been proposed to cleave the NH2 terminus of profilaggrin, facilitating the release of the NH2-terminal S-100 protein (20, 21). In contrast, calpain I and profilaggrin endopeptidase I (PEP-I) were implicated in the processing of the linker regions between the filaggrin monomer repeats to generate the filaggrin monomer (22–25). Recently, significant results regarding the conversion of profilaggrin to filaggrin have been obtained with the knock-out of matriptase/MT-SP1, prostasin/channel-activating serine protease 1/Prss 8, and caspase 14 in mice (26–28). These proteases were a key component of the profilaggrin-processing pathway in terminal epidermal differentiation. However, although the signal initiating the degradation of profilaggrin at a defined stage of the maturation of the stratum corneum was found to be the water gradient within the stratum corneum itself (11), the proteases for the processing of filaggrin and/or the deiminated form into peptides following the breakdown of these peptides to amino acids including citrulline remain unknown.In this study, we have purified a novel aminopeptidase using a deiminated substrate from rat skin homogenate and identified it as a neutral cysteine protease, bleomycin hydrolase (BH). Furthermore, we investigated the processing of the deiminated filaggrin by calpain I or caspase 14. Based on these results, we proposed that calpain I participated preferentially in the processing of deiminated filaggrin into peptides and then BH appeared essential for the breakdown of the peptides into amino acids. |