首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational analysis of intermediates involved in the in vitro folding pathways of recombinant human macrophage colony stimulating factor beta by sulfhydryl group trapping and hydrogen/deuterium pulsed labeling
Authors:Zhang Y Heidi  Yan Xuguang  Maier Claudia S  Schimerlik Michael I  Deinzer Max L
Institution:Department of Chemistry, Oregon State University, Corvallis, OR 97330, USA.
Abstract:In vitro oxidative folding of reduced recombinant human macrophage colony stimulating factor beta (rhm-CSFbeta) involves two major events: disulfide isomerization in the monomeric intermediates and disulfide-mediated dimerization. Kinetic analysis of rhm-CSFbeta folding indicated that monomer isomerization is slower than dimerization and is, in fact, the rate-determining step. A time-dependent determination of the number of free cysteines remaining was made after refolding commence. The folding intermediates revealed that rhm-CSFbeta folds systematically, forming disulfide bonds via multiple pathways. Mass spectrometric evidence indicates that native as well as non-native intrasubunit disulfide bonds form in monomeric intermediates. Initial dimerization is assumed to involve formation of disulfide bonds, Cys 157/159-Cys' 157/159. Among six intrasubunit disulfide bonds, Cys 48-Cys 139 and Cys' 48-Cys' 139 are assumed to be the last to form, while Cys 31-Cys' 31 is the last intersubunit disulfide bond that forms. Conformational properties of the folding intermediates were probed by H/D exchange pulsed labeling, which showed the coexistence of noncompact dimeric and monomeric species at early stages of folding. As renaturation progresses, the noncompact dimer undergoes significant structural rearrangement, forming a native-like dimer while the monomer maintains a noncompact conformation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号