首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conventional and transgenic strategies to enhance the acid soil tolerance of barley
Authors:Jéssica Rosset Ferreira  Euclydes Minella  Carla Andréa Delatorre  Emmanuel Delhaize  Peter R Ryan  Jorge Fernando Pereira
Institution:1.Federal University of Rio Grande do Sul,Porto Alegre,Brazil;2.Embrapa Trigo,Passo Fundo,Brazil;3.CSIRO Agriculture and Food,Canberra,Australia;4.Embrapa Gado de Leite,Juiz de Fora,Brazil
Abstract:The aluminum (Al3+) tolerance of barley cultivars predominately from Brazil was compared to that of cultivars from other countries, wild barley accessions, and a transgenic line (L5) over-expressing TaALMT1, the major Al3+ tolerance gene from wheat. After screening conventional germplasm for Al3+ tolerance in hydroponics, 18 genotypes were further characterized in a short-term soil experiment. Among the Brazilian cultivars, Antarctica 01 and BRS Mariana showed the greatest relative root length (RRL) in acid soil. However, these cultivars were significantly less tolerant than the foreign cultivars Dayton (USA) and Murasakimochi (Japan) and the transgenic line L5 which out-performed all conventional genotypes. In long-term growth trials, the transgenic line produced the greatest relative root and relative shoot dry weight. Relative grain yield was greatest in the transgenic line and Dayton. All genotypes were also scored for two genetic markers linked to HvAACT1, the major Al3+ tolerance gene in barley. One marker detects a 1-kb insertion in the promoter that increases gene expression and leads to increased Al3+-activated citrate efflux from root apices. The other marker detects a 21-bp indel downstream of the coding region. The 1-kb insertion was only detected in Dayton and Murasakimochi that were the best performing cultivars among the non-transgenic germplasm. Interestingly, the Brazilian cultivars with an intermediate level of tolerance, Antarctica 01 and BRS Mariana, lacked the 1-kb insertion but had enhanced HvAACT1 expression compared to an Al3+-sensitive cultivar. No clear correlation was observed between Al3+ tolerance and the 21-bp indel marker in the short-term soil trials. We conclude that improved Al3+ tolerance in barley could be achieved by combining the best allele of HvAACT1 along with TaALMT1 as a transgene.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号