首页 | 本学科首页   官方微博 | 高级检索  
     


A Specific Transduction Mechanism for the Glutamate Action on Phosphoinositide Metabolism via the Quisqualate Metabotropic Receptor in Rat Brain Synaptoneurosomes: II. Calcium Dependency, Cadmium Inhibition
Authors:Janique Guiramand,Michel Vignes,Max Ré  casens
Affiliation:INSERM U. 254, H?pital Saint Charles, Montpellier, France.
Abstract:
In this article, we demonstrate that an increase in intracellular Ca2+ concentration may represent a specific common step(s) in the mechanism(s) of action of glutamate (Glu) and depolarizing agents on formation of inositol phosphates (IPs) in 8-day-old rat forebrain synaptoneurosomes. In fact, A23187, a Ca2+ ionophore, induces a dose-dependent accumulation of IPs, which is not additive with that evoked by Glu and K+ but is slightly synergistic with that induced by carbachol. In addition, Glu and K+ augment the intracellular Ca2+ concentration in synaptoneurosome preparations as measured by the fura-2 assay. The absence of external Ca2+ decreases basal and Glu-, and K(+)-stimulated formation of IPs. Cd2+ (100 microM) fully inhibits both Glu- and K(+)-evoked formation of IPs without affecting the carbachol-elicited response of IPs. Zn2+ inhibits Glu- and K(+)-stimulated accumulation of IPs (IC50 approximately 0.4 mM) but with a lower affinity than Cd2+ (IC50 approximately 0.035 mM). The organic Ca2+ channel blockers verapamil (10 microM), nifedipine (10 microM), omega-conotoxin (2 microM), and amiloride (10 microM) as well as the inorganic blockers Co2+ (100 microM) and La3+ (100 microM) block neither Glu- nor K(+)-evoked formation of IPs, a result suggesting that the opening of the L-, T-, N-, or P-type Ca2+ channels does not participate in these responses. All these data suggest that an increase in intracellular Ca2+ concentration resulting from an influx of Ca2+, sensitive to Cd2+ but not to other classical Ca2+ antagonists, may play a key role in the transduction mechanism activated by Glu or depolarizing agents.
Keywords:Glutamate receptor    Inositol phosphate    Calcium channels    Calcium ionophore    Synaptoneurosomes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号