首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ.
Authors:B S Jahromi  R Robitaille  M P Charlton
Institution:National Centers of Excellence, Department of Physiology, University of Toronto, Ontario, Canada.
Abstract:Glial cells isolated from the nervous system are sensitive to neurotransmitters and may therefore be involved in synaptic transmission. The sensitivity of individual perisynaptic Schwann cells to activity of a single synapse was investigated, in situ, at the frog neuromuscular junction by monitoring changes in intracellular Ca2+ in the Schwann cells. Motor nerve stimulation induced an increase in intracellular Ca2+ in these Schwann cells; this increase was greatly reduced when transmitter release was blocked. Furthermore, local application of the cotransmitters acetylcholine and ATP evoked Ca2+ responses even in the absence of extracellular Ca2+. Successive trains of nerve stimuli or applications of transmitters resulted in progressively smaller Ca2+ responses. We conclude that transmitter released during synaptic activity can evoke release of intracellular Ca2+ in perisynaptic Schwann cells. This Ca2+ signal may play a role in the maintenance or modulation of a synapse. These data show that synaptic transmission involves three cellular components with both postsynaptic and glial components responding to transmitter secretion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号