首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formation of the tight-binding inhibitor, 3-ketoarabinitol-1,5-bisphosphate by ribulose-1,5-bisphosphate carboxylase/oxygenase is O2-dependent
Authors:Zhu  Genhai  Bohnert  Hans J  Jensen  Richard G  Wildner  Günter F
Institution:(1) Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA;(2) Department of Biology, Ruhr-University Bochum, D-44780 Bochum, Germany
Abstract:Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39) not only catalyzes carboxylation and oxygenation of ribulose-1,5-bisphosphate (RuBP), but it can also act either as an epimerase or isomerase converting RuBP into xylulose-1,5-bisphosphate (XuBP) or 3-ketoarabinitol-1,5-bisphosphate (KABP), respectively, a process called misfire. XuBP is formed as a result of misprotonation at C3 of the RuBP-enediol. It is released from Rubisco active sites and accumulates in the reaction mixture. Increasing the amounts of CO2 or O2 decreases XuBP production. However, KABP synthesis, which has been proposed to be only a product due to C2 misprotonation of the RuBP-endiol, is dependent upon the presence of O2. KABP remains tightly bound to Rubisco active sites after its formation, causing the loss of Rubisco activity (lsquofalloverrsquo). The results suggest that the non-stabilized form of the peroxy-intermediate in the oxygenase reaction can be converted in a backreaction to KABP and molecular oxygen. The stabilization of the peroxy-intermediate due to the presence of Mn2+ instead of Mg2+ eliminates the formation of KABP.
Keywords:epimerization  isomerization  inhibitor binding  photosynthesis  Rubisco
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号