首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolism of low-density lipoprotein-proteoglycan complex by macrophages: further evidence for a receptor pathway
Authors:P Vijayagopal  S R Srinivasan  K M Jones  B Radhakrishnamurthy  G S Berenson
Institution:Department of Medicine, Louisiana State University Medical Center, New Orleans 70112.
Abstract:Earlier, we (Vijayagopal, P., et al. (1985) Biochim. Biophys. Acta 837-251) have shown that complexes of plasma low-density lipoproteins (LDL) and arterial chondroitin sulfate-dermatan sulfate proteoglycan aggregate promote LDL degradation and cholesteryl ester accumulation in mouse peritoneal macrophages. Further studies were conducted to determine whether LDL-proteoglycan complex is metabolized by a receptor-mediated process. Native proteoglycan aggregate was isolated from bovine aorta by associative CsCl isopycnic centrifugation. Complex of 125I-labeled LDL and proteoglycan aggregate formed in the presence of 30 mM Ca2+ was incubated with macrophages, and the binding at 4 degrees C and degradation at 37 degrees C of 125I-labeled LDL in the complex was monitored. Both binding and degradation of the complex were specific and saturable, suggesting that the processes are receptor mediated. The Kd for binding was 23 micrograms LDL protein per ml in the complex. Degradation of 125I-labeled LDL-proteoglycan complex was not suppressed by preincubation of macrophages with excess unlabeled complex, suggesting that the receptor for the complex is not subject to down regulation. Both binding and degradation of the complex and the resultant stimulation of cholesteryl ester synthesis were inhibited by limited treatment of cells with low doses of trypsin and pronase, indicating that the binding sites are protein or glycoprotein in nature. Binding was not inhibited by an excess of native LDL and beta-VLDL and exhibited only partial competition by excess unlabeled acetyl-LDL; however, polyinosinic acid, fucoidin and dextran sulfate, known inhibitors of acetyl-LDL binding and degradation in macrophages, did not affect LDL-proteoglycan complex binding and degradation. Similarly, excess unlabeled LDL-proteoglycan complex produced only partial inhibition of the binding and degradation of 125I-labeled acetyl-LDL by macrophages, suggesting that the binding sites for acetyl-LDL and LDL-proteoglycan complex are probably not identical. These studies provide evidence for a receptor-mediated pathway for the metabolism of LDL-proteoglycan complex in macrophages.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号