首页 | 本学科首页   官方微博 | 高级检索  
     


Endocytic Accessory Factors and Regulation of Clathrin-Mediated Endocytosis
Authors:Christien J. Merrifield  Marko Kaksonen
Affiliation:1.Laboratoire d’Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique UPR3082, 91198 Gif-sur-Yvette, France;2.Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
Abstract:
Up to 60 different proteins are recruited to the site of clathrin-mediated endocytosis in an ordered sequence. These accessory proteins have roles during all the different stages of clathrin-mediated endocytosis. First, they participate in the initiation of the endocytic event, thereby determining when and where endocytic vesicles are made; later they are involved in the maturation of the clathrin coat, recruitment of specific cargo molecules, bending of the membrane, and finally in scission and uncoating of the nascent vesicle. In addition, many of the accessory components are involved in regulating and coupling the actin cytoskeleton to the endocytic membrane. We will discuss the different accessory components and their various roles. Most of the data comes from studies performed with cultured mammalian cells or yeast cells. The process of endocytosis is well conserved between these different organisms, but there are also many interesting differences that may shed light on the mechanistic principles of endocytosis.Receptor-mediated endocytosis is the process by which eukaryotic cells concentrate and internalize cell surface receptors from the plasma membrane into small (∼50 nm– ∼100 nm diameter) membrane vesicles (Chen et al. 2011; McMahon and Boucrot 2011; Weinberg and Drubin 2012). This mechanism has been studied extensively in mammalian tissue culture cells and in yeast, and despite the evolutionary distance between yeast and mammalian cells the mechanism of receptor-mediated endocytosis in the respective cell types show remarkable similarities. Indeed many of the ∼60 endocytic accessory proteins (EAPs) found in yeast have homologs in mammalian cells, although both cell types also have unique EAPs (McMahon and Boucrot 2011; Weinberg and Drubin 2012).In the following, we briefly describe known yeast and mammalian EAPs (Sigismund et al. 2012; see also Bökel and Brand 2013; Cosker and Segal 2014; Di Fiore and von Zastrow 2014).

Table 1.

Key endocytic proteins in mammals and in yeast
MammalsYeastFunction
Coat proteinsClathrinChc1, Clc1Coat protein
AP-2 (4 subunits)AP-2 (4 subunits)Adaptor protein
EpsinEnt1/2Adaptor protein
AP180Yap1801/2Adaptor protein
CALMAdaptor protein
NECAPAdaptor protein
FCHo1/2Syp1Adaptor protein
Eps15Ede1Scaffold protein
IntersectinPan1Scaffold protein
Sla1Scaffold protein
End3Scaffold protein
N-BAR proteinsAmphiphysinRvs161/167Membrane curvature sensor/generator
EndophilinMembrane curvature sensor/generator
BIN1Membrane curvature sensor/generator
DynaminDynamin1/2Vps1Mechanoenzyme, GTPase
Actin cytoskeletonActinAct1Actin monomer
Arp2/3 complexArp2/3 complexActin filament nucleator
ABP1Abp1Actin-binding protein
CortactinActin-binding protein
CoroninCrn1Actin-binding protein
CofilinCof1Actin depolymerizing protein
Actin regulatorsMyosin 1EMyo3/5Actin motor
Myosin 6Actin motor
Hip1R, Hip1Sla2Actin-membrane coupler
SyndapinBzz1BAR domain protein
N-WASPLas17Regulator of actin nucleation
WIP/WIREVrp1Regulator of actin nucleation
SNX9Regulator of actin nucleation
Bbc1Regulator of actin nucleation
Other regulatorsAAK1Ark1/Prk1Protein kinase
Auxilin, GAKUncoating factor
SynaptojaninSjl2Lipid phosphatase
OCRL1Lipid phosphatase
Open in a separate windowThe proteins are grouped into functional categories and the homologous proteins are listed on the same line.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号