首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of Corticotropin-(1–24)-Tetracosapeptide on Polyphosphoinositide Metabolism and Protein Phosphorylation in Rabbit Iris Subcellular Fractions
Authors:Rashid A Akhtar  William C Taft  Ata A Abdel-Latif
Institution:Department of Cell and Molecular Biology, Medical College of Georgia, Augusta, Georgia, U.S.A.
Abstract:Abstract: Effects of the neuropeptide corticotropin-(1–24) -tetracosapeptide (ACTH) on the endogenous and exogenous phosphorylation of lipids and endogenous phosphorylation of proteins were investigated in microsomes and a 110,000 ×g supernatant fraction 30–50% (NH4)2SO4 precipitate; ASP30–50] obtained from rabbit iris smooth muscle. Subcellular distribution studies revealed that both of these fractions are enriched in diphosphoinositide (DPI) kinase. The 32P labeling of lipids and proteins was measured by incubation of the subcellular fractions with γ-32P]ATP. The labeled lipids, which consisted of triphosphoinositide (TPI), DPI, and phosphatidic acid (PA) were isolated by TLC. The microsomal and ASP30–50 fractions were resolved into six and nine labeled phosphoprotein bands, respectively, by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The basal labeling of both lipids and proteins was rapid (30–60 s), and it was dependent on the presence of Mg2+ in the incubation medium; in general it was inhibited by high concentrations (>0.2 mM) of Ca2+. ACTH stimulated the labeling of TPI and inhibited that of PA in a dose-dependent manner, with maximal effect observed at 50–100 μ of the peptide. ACTH appears to increase TPI labeling by stimulating the DPI kinase. Under the same experimental conditions ACTH (100 μM) inhibited significantly the endogenous phosphorylation of six microsomal phosphoproteins (100K, 84K, 65K, 53K, 48K, and 17K). In the ASP30–50 fraction, ACTH inhibited the phosphorylation of three phosphoproteins (53K, 48K, and 17K) and stimulated the labeling of six phosphoprotein bands (117K, 100K, 84K, 65K, 42K, and 35K). The effects of ACTH on lipid and protein phosphorylation are probably Ca2+-independent; thus the neuropeptide effects were not influenced by either 1 μM EGTA or low concentrations of Ca2+ (50 μ.M). We conclude that a relationship may exist between polyphosphoinositide metabolism and protein phosphorylation in the rabbit iris smooth muscle.
Keywords:Iris  Microsomal and soluble fractions  ACTH  Phosphorylation  Polyphosphoinositides  Phosphoproteins
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号