Alzheimer beta-amyloid peptides: normal and abnormal localization |
| |
Authors: | Takahashi R H Nam E E Edgar M Gouras G K |
| |
Affiliation: | Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA. |
| |
Abstract: | Alzheimer's disease (AD) neuropathology is characterized by accumulation of "senile" plaques (SPs) and neurofibrillary tangles (NFTs) in vulnerable brain regions. SPs are principally composed of aggregates of up to 42/43 amino acid beta-amyloid (A beta) peptides. The discovery of familial AD (FAD) mutations in the genes for the amyloid precursor protein (APP) and presenilins (PSs), all of which increase A beta42 production, support the view that A beta is centrally involved in the pathogenesis of AD. A beta42 aggregates readily, and is thought to seed the formation of fibrils, which then act as templates for plaque formation. A beta is generated by the sequential intracellular cleavage of APP by beta-secretase to generate the N-terminal end of A beta, and intramembranous cleavage by gamma-secretase to generate the C-terminal end. Cell biological studies have demonstrated that A beta is generated in the ER, Golgi, and endosomal/lysosomal system. A central question involving the role of A beta in AD concerns how A beta causes disease and whether it is extracellular A beta deposition and/or intracellular A beta accumulation that initiates the disease process. The most prevalent view is that SPs are composed of extracellular deposits of secreted A beta and that A beta causes toxicity to surrounding neurons as extracellular SP. The recent emphasis on the intracellular biology of APP and A beta has led some investigators to consider the possibility that intraneuronal A beta may directly cause toxicity. In this review we will outline current knowledge of the localization of both intracellular and extracellular A beta. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|