首页 | 本学科首页   官方微博 | 高级检索  
     


Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics
Authors:Rameshwar Prajapati  Abhay T. Sangamwar
Affiliation:Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S. A. S. Nagar, Punjab, India
Abstract:P-glycoprotein (P-gp) is well known for multidrug resistance in drug therapy. Its over-expression results into the increased efflux of therapeutic agents rendering them inefficacious. A clear understanding of P-gp efflux mechanism and substrate/inhibitor interactions during the course of efflux cycle will be crucial for designing effective P-gp inhibitors, and therapeutic agents that are non-substrate to P-gp. In the present work, we have modeled P-gp in three different catalytic states. These models were utilized for elucidation of P-gp translocation mechanism using multi-targeted molecular dynamics (MTMD). The gradual changes occurring in P-gp structure from inward open to outward open conformation were sampled out. A detailed investigation of conformational changes occurring in trans-membrane domains (TMDs) during the course of catalytic cycle was carried out. Movements of each TM helices in response to pronounced twisting and translatory motion of NBDs were measured quantitatively. The role of intracellular coupling helices (ICHs) during the structural transition of P-gp was studied, and observed as vital links for structural transition. A close observation of displacements and conformational changes in the residues lining drug-binding pocket was also carried out. Further, we have analyzed the molecular interactions of P-gp substrates/inhibitors during the P-gp translocation to find out how stable binding interactions of a compound at drug-binding site(s) in open conformation, becomes highly destabilized in closed conformation. The study revealed striking differences between the molecular interactions of substrate and inhibitor; inhibitors showed a tendency to maintain stable binding interactions during the catalytic transition cycle.
Keywords:P-glycoprotein   Multi-targeted molecular dynamics   Translocation mechanism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号