Affinity surfactants as reversibly bound ligands for high-performance affinity chromatography |
| |
Authors: | J L Torres R Guzman R G Carbonell P K Klipatrick |
| |
Affiliation: | Department of Chemical Engineering, North Carolina State University, Raleigh 27695. |
| |
Abstract: | Pyridine was coupled covalently to a nonionic ethoxylated alcohol: octaethylene glycol n-hexadecyl ether. This modified surfactant was found to be a reversible, competitive inhibitor of horse serum cholinesterase. The surfactant bound irreversibly, in aqueous media, to octadecyl-bounded reverse phase silica particles commonly used for high-performance liquid chromatography. The amount of ligand bound was found to be 550 mumol/ml of packing, a concentration that is over 100 times higher than what can be normally bound to agarose affinity chromatography supports. With this packing, a 280-fold purification of cholinesterase from horse serum and a 79-fold purification of human serum cholinesterase were accomplished, with yields greater than 80%, using a 2-cm-long column and a 7-min elution time. The affinity surfactant could be eluted from the column using a 6:4 (v/v) mixture of methanol and isopropanol. This technique should be generally applicable in the development of biospecific supports for high-performance affinity chromatography. |
| |
Keywords: | |
|
|