首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of soil texture, moisture, and surface cracks on the performance of a root-feeding flea beetle, Longitarsus bethae (Coleoptera: Chrysomelidae), a biological control agent for Lantana camara (Verbenaceae)
Authors:Simelane David O
Institution:Weeds Research Division, ARC-Plant Protection Research Institute, P/Bag X134, Pretoria 0001, South Africa. simelaned@arc.agric.za
Abstract:Laboratory studies were conducted to determine the influence of soil texture, moisture and surface cracks on adult preference and survival of the root-feeding flea beetle, Longitarsus bethae Savini and Escalona (Coleoptera: Chrysomelidae), a natural enemy of the weed, Lantana camara L. (Verbenaceae). Adult feeding, oviposition preference, and survival of the immature stages of L. bethae were examined at four soil textures (clayey, silty loam, sandy loam, and sandy soil), three soil moisture levels (low, moderate, and high), and two soil surface conditions (with or without surface cracks). Both soil texture and moisture had no influence on leaf feeding and colonization by adult L. bethae. Soil texture had a significant influence on oviposition, with adults preferring to lay on clayey and sandy soils to silty or sandy loam soils. However, survival to adulthood was significantly higher in clayey soils than in other soil textures. There was a tendency for females to deposit more eggs at greater depth in both clayey and sandy soils than in other soil textures. Although oviposition preference and depth of oviposition were not influenced by soil moisture, survival in moderately moist soils was significantly higher than in other moisture levels. Development of immature stages in high soil moisture levels was significantly slower than in other soil moisture levels. There were no variations in the body size of beetles that emerged from different soil textures and moisture levels. Females laid almost three times more eggs on cracked than on noncracked soils. It is predicted that clayey and moderately moist soils will favor the survival of L. bethae, and under these conditions, damage to the roots is likely to be high. This information will aid in the selection of suitable release sites where L. bethae would be most likely to become established.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号