首页 | 本学科首页   官方微博 | 高级检索  
     


Synthetic prostacyclin analogs differentially regulate macrophage function via distinct analog-receptor binding specificities
Authors:Aronoff David M  Peres Camila M  Serezani Carlos H  Ballinger Megan N  Carstens Jennifer K  Coleman Nicole  Moore Bethany B  Peebles R Stokes  Faccioli Lucia H  Peters-Golden Marc
Affiliation:Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health Systems, Ann Arbor, MI 48109, USA. daronoff@umich.edu
Abstract:PGI(2) (prostacyclin) is a lipid mediator with vasodilatory and antithrombotic effects used in the treatment of vasoconstrictive/ischemic diseases including pulmonary artery hypertension. However, emerging research supports a role for PGs, including PGI(2), in the regulation of both innate and acquired immunity. As PGI(2) is unstable, we sought to define the effects of various PGI(2) analogs on resident alveolar macrophage (AM) and peritoneal macrophage (PM) innate immune functions. The effects of iloprost, carbaprostacyclin, and treprostinil on the regulation of phagocytosis, bacterial killing, and inflammatory mediator production were determined in both macrophage populations from rats. Iloprost failed to suppress AM functions to the same degree that it did in PMs, a characteristic shared by carbaprostacyclin. This difference reflected greater expression of the G(alphas) protein-coupled I prostanoid receptor and greater cAMP generation in PMs than AMs. Treprostinil inhibited phagocytosis, bacterial killing, and cytokine generation in AMs to a much greater degree than the other PGI(2) analogs and more closely resembled the effects of PGE(2). Studies with the E prostanoid (EP) 2 receptor antagonist AH-6809 and EP2-null macrophages indicated that this was due in part to the previously unknown ability of treprostinil to stimulate the EP2 receptor. The present investigation for the first time identifies differences in immunoregulatory properties of clinically administered PGI(2) analogs. These studies are the first to explore the capacity of PGI(2) to regulate bacterial killing and phagocytosis in macrophages, and our findings may hold important consequences regarding the risk of infection for patients receiving such agents.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号